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A recent puzzle in the field of rough surfaces has been to understand the experimen-
tal observations of self-affine surfaces that differ from the usual KPZ predictions [4,6].
Anomalous roughening, as it is called, has been seen in a diverse range of experiments
including viscous flow and wetting in porous media, the burning of paper, and the growth

of bacterial colonies [3,9,11,12)].

Self-affine interfaces are characterized by the scaling of the root-mean-square surface width
w(l, ) = ([h(z,t) — (h(z, )72, (1)

Here h(z,t) is the surface height at time ¢, and the angular brackets denote the average
over z belonging to an interval of size I. It is expected that the width w(l,?) follows the

scaling law
w(l,8) ~ 12 (t/19/9), @
This law was verified for the KPZ equation, in d = 1 + 1, with  =1/2 and § = 1/3.

Recently, Buldyrev et al. [3] have performed imbibition experiments, using paper as the

random medium and various aqueous suspensions as wetting fluids. They observed that,
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after some hours, the interface stopped moving, and they measured a roughness exponent
of a = 0.63 £ 0.04 for this stationary interface. To explain this result, they introduced a
new model of interfacial growth [2,3]. It incorporates the quenched disorder, pinning and
spreading properties of percolation with a rule that erodes overhangs. It was suggested
that directed percolation described a new universality class of interfacial growth, and a
roughness exponent of a ~ 0.63 was predicted. A similar model giving the same predictions

was also advanced by Tang and Leschhorn [10].

In this paper, we present an overview of our numerical and theoretical studies of the static
and dynamic properties of this interface model. We map this surface growth model to a
network of diodes and resistors and to the geometry of directed percolation. In particular,
‘we demonstrate that the interface is equivalent to the hull (external perimeter) of a critical
conductive -backbone in the directed percolation problem. This mapping enables us to
calculate the fractal dimension and spatial distribution of surface growth sites. Also, we
can explain the dynamics of the interfacial growth and observations of an anomalously
{

large (a ~ 0.75) roughness exponent. Finally, a possible theory of the avalanche exponent

is proposed, and we point to unresolved problems in the model.

1. Model

The principal model examined in this paper is the original one of Buldyrev et al. [3], which

we call Model A.

Model A - Fast Erosion is defined as follows: On a square lattice of edge L, block a fraction
g of the sites corresponding to the inhomogeneous nature of the medium. At each time step
we choose all cells that are unblocked dry cells and nearest neighbors to the interface. We
wet these cells and all cells below them in their columns. ‘The procedure is then iterated.
This process never produces overhangs. A variation on the above theme is Model B - Slow
Erosion. This model differs from model A only in the way that the columns are eroded.

In model B, we erode the blocked sites of a column one by one, until an unblocked cell is
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reached. Unlike model A, transient overhangs can be formed.
2.1 Numerical results: Statics

For small values of ¢, the wetting proceeds unchecked almost everywhere. Above a critical
value ¢, the interface is pinned by blocked sites. This stopped interface is identical for
models A and B, and a roughness exponent of a = 0.63 + 0.02 was found. Figure 1 shows
the stopped interface; black squares are dry blocked cells, shaded squares are unblocked

dry cells, and wet cells are not shown.
2.2 Numerical results: Dynamics

(i) Roughness exponent a. For ¢ < ¢., we measure a roughness exponent for the moving
interface: @ = 0.75 & .05. A value for the usual dynamic exponent of § = 0.63 £ .05 was

also found. -

(ii) Fractal dust. Near g, the interface does not move upward in a uniform manner. In
some regions it may get stuck for a time, in other regions it proceeds by steady erosion.
This intermittent behavior must be taken into account in explaining the large dynamic «
value (see Section 3.2). Two length scales ¢ and £1 can be extracted from the observed
dynamics. Close to but below g., however, the front advances only in highly localized
regions. At any given time, the projection (onto the z axis) of the live sites forms a fractal
dust, as shown in Figure 1. We analyze this set in several ways. Just below g., the average

number of growth sites N, varies with linear scale r like
Ny ~rPs (r< ) (3)

where D, ~ 0.52 £ 0.03 is the fractal dimension of the dust. An alternative description
of this scaling is provided by the density-density correlation function g(r) over distances r

on the z axis. The numerical data suggest that ¢g(r) behaves as

g(r) ~ rPa=1f(r/gy) | (4)
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where f(u) is a scaling function such that

const u<l1
flu) ~ {ul-Da u>1 )

In log-log plots, we see clear the scaling behavior of g(r). A best fit to the non-zero slope
there yields —0.45 + 0.01, i.e. D, = 0.55 & 0.01. The related distribution of the linear
distances (projected onto the z axis) between growth sites is is directly related to the

growth-site dimension. The length distribution follows the scaling form

n(l) ~ 1I"0+D2) g1/ 4 - (6)

where we find D, = 0.53 £ 0.04. To summarize, all three approaches yield similar values

for Dy ~ 0.53 £ 0.03.

(iii) Avalanches. Space-time plot of growth sites. £ and £ plot. Avalanche size distribu-
tion n(V) and 7440 = 1.24.

Our model can be modified so that even when the growth is completely stopped the blocked
cells on the interface may still erode, but at an infinitely low rate. With this assumption,
we can remove blocked cells at random when the interface is completely stopped. Each
removal will produce an avalanche of growth which will die out when the front is again

pinned. We study the distribution of avalanche sizes P(V), and find the scaling relation
P(V) ~ V7Tt F(V/Vs), (7

where V is the number of sites removed in an avalanche, and Vg ~ {1 is the characteristic
volume. The probability P(V) of the occurrence of an avalanche of size V is estimated
to be the ratio of the number of avalanches of t'his size to the total number of avalancheé
observed. The maximum linear extent of the avalanches, in the horizontal and vertical
directions, is found to scale with exponents »| = 1.73 & 0.02 and v; = 1.10 £ 0.02. We
find the value of the exponent 74,4 in (7) to be 1.245 + 0.02. .
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3.1 Theory: Statics |

(i) Mapping to diode-resistor network.

For theoretical conveﬁience we place the model of Reference 3 on a square bond lattice A,
tilted by 45° from the usual orientation. As before, we block a fraction g of the bonds.
Here the analogous wetting rule is the following: (i) at each time step, wet all unblocked
dry bonds which are nearest neighbors to the interface, (ii) wet any bonds fhat are in the

downward ‘light cones’ of newly-wetted bonds.

It is straightforward to map this particular rule onto a network of resistors and diodes,
the so-called “reverse” percolation problem [Redner 1983 in Deutscher et al.]. Blocked
bonds map to downward-directed diodes, since diodes allow current to flow in only one
direction; unblocked bonds map onto resistors. We therefore need two types of diodes: one
set directed southwest (SW), the other southeast (SE). Imagine a line of current sources
arrayed along the x-axis. At ¢ = 1, the entire lower half plane will carry current.. As
the concentration of resistors increases (¢ decreases), backflow will carry current upper a
certain height. At a critical value g., infinite paths of backflow completely cover the upper
half plane of A.

This transition is, of course, just a re-phrasing of our wetting critical point. An advan-
tage of the electrical picture is that the duality with a diode-insulator problem (directed
percolation) can be clearly appreciated. To see this, construct a lattice A’ whose bonds
are the perpendicular bisectors of the bonds in A. SW (SE) diodes in A are made to
correspond to SE (NE) diodes in A’. Likewise, resistors in A are mappéd onto inéulators

in A'. The correspondence between the circuit elements implies that

g=p | (8)

where p is the probability of a directed bond in the dual (directed percolation) problem.

In particular, g, = p..

(i1) Dual directed percolation surface = the backbone hull, o = 0.633.
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In the diode-resistor network, only a continuous front of downward-directed diodes can
stop the current flow. Under the dual mapping, this front corresponds to a spanning path
of diodes directed from West to East. However, the diode-insulator construction contains
an arbitrary element in that the SE (NE) diodes of A’ could have just as easily been given
the opﬁosite‘ orientation of NW (SW). In this case, the stopped surface then corresponds
to an East-to-West path of diodes in the dual lattice. This East-West symmetry is also
required by th¢ symmetry of the growth rule. The union of all connecting paths is the
conductive backbone. Therefore, in the dual lattice, it is the external perimeter (or hull) of
the back‘t;one that permanently blocks the wetting. For ¢ > g. the interface is pinned and
is identical to the backbone hull. Exactly at g, the backbone and its hull a.fe self-affine
fractals [1,7,8]. As in regular percolation, the backbone has the geometry of a beaded string,
where multiply-connected blobs are strung together by short strings of singly-connected
sites, the so-called red sites. The cluster and backbone are both described by the same v
and v, since there are only two scaling lengths in the problem. Moreover, the cluster and
backbone hulls also share these exponents. Figure 2 shows the conductive backbone on a

triangular site lattice. The ‘beaded string’ geometry of the backbone is apparent.

- 3.2 Theory: Dynamics

(i) a dynamic

We recast the question of a dynamical « exponent as follows: How can one calculate the
variance of the moving- interface width when the dynamics of the interface is manifestly |
non-uniform? A simple ansatz if that < w? > be written as the sum fo two contributions:
one from the pinned directed backbone segments, the other from the active ‘fractal dust’
regions. In the pinned case, the squared width scales with the longitudinal length like
w? ~ 2%, For the “dusty” regions, we assume a jump and a finite slope in the interface,

i.e. w? ~ [2. Combining the two pieces, weighted by the density along the interface, gives

<w? >~ 1% [Pomt 2 o[ PetL (9)
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On the basis of this picture, we then predict a dynamic a of (Dy + 1)/2 = 0.765, to be
compared with the observed 0.75 £ .05. (ii) Dust dimension. Red bonds Dl_le g = 0.577.

We can construct a theory of the growth dimension D, from the geometry of the directed-
percolation backbone. Imagine the interface at g., pinned by the backbone hull. Decreasing
the concentration of blocked sites by a small fraction affects the pinned surface only if sites
of the backbone hull are removed. For instance, deleting a site belonging to the hull of a
blob will trigger a growth spurt with duration dependent on the site’s exact position. Once
the hull is breached at a red site, then the backbone as a whole is eventually wetted, and
the interface moves upward until it encounters another backbone surface. The red sites are
therefore the scenes of the most dramatic growth spurts; We identify the red sites with the
set of growth sites. The Coniglio argument can be applied to find the fractal dimension of
the red sites.

D!, =1/vy =0577. (10)
It should be noted that the same argument applied to two-dimensional isbtropic percolation
is not exact [5]. Nonetheless, there it gives an accurate estimate of the true isotropic

exponent, and we may expect the same in our directed model.

(iv) Avalanches. Backbone void picture. 7,441 €xplanation.

Although the directed backbone hull is sufficient to describe the pinned interface, the
dynamics of the growth requires some details of the internal structure of the directed
backbone.

The backbone is actually a nested collection of pinning ‘surfaces, like a complicated
onion, and the succession of avalanches can be thought of as unpeeling this onion. The
spaces between the backbone paths we label the voids. Since the avalanches erode the
backbone void by void, we first assume that the size distributions of voids and avalanches
are identical. The size of a void will scale like the product of longitudinal and transverse

lengths, and this will scale like {j€,. In terms of a longitudinal length [, the scaling
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dimension of an individual void is then D =1+ v /v|- The number of voids is, however,
tied to the scaling dimension of the backbone as a whole, D,I,Ib. The void size distribution

exponent T,,;4 1S then given by

2p

V||+V_L

Tvoia =1+ D),/ D=2 - = 1.80, (11)

where 3 is the order parameter exponent for the directed percolation problem, and 28 is
the exponent for the directed percolation backbone problem. However, in the dynami'cs,
the avalanches are chosen with a distinct bias: larger voids will have larger surfaces and
these will be eroded with a frequency proportional to their exposed surface. Thus the
above calculation underestimates the number of large avalanches. This is corrected by
* multiplying s~™i¢ by the longitudinal factor [ = s?/(+®). We then arrive at a final

expression for 7gyai:
Y|+ 2B

1.19. | (12)
v+ v

Taval = 4 —

This is significantly outside the error bars of our numerical value for 7,441, and leads us to
speculate that a key ingredient is still missing in the theory for the dynamics.
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